Subnet question
Hello all
Stuck on this problem. plz help
[FONT="]What is the network address and subnet mask (in CIDR noration) of the hidden (xxx.xxx.xxx.xxx/xx) subnet? The whole network has a network address and subnet mask of 192.168.0.0/23[/FONT]
![HAAAAAElFTkSuQmCC](http://www.techexams.net/image/png;base64,iVBORw0KGgoAAAANSUhEUgAAAeAAAAGQCAYAAAB29rNUAAAgAElEQVR4Xuy9CXQc13ku+NXSXb1gX0gABECAhCiRokSJpBdZi+XYMTW2rHgUS85Ymrw5fhNp5i1JnBM7sv3s0E783slk8TtRnmMnsfKS2EokObLGsSe2ol2kJUuiKFLiDpIgCILY10avtcy5hS6qWKzurm50d1V3/XUsA0Tfuve/3//1/9V/t+JAFyFACBAChAAhQAhUHQGu6i1Sg4QAIUAIEAKEACEAEmAiASFACBAChAAh4AICJMAugE5NEgKEACFACBACJMDEAUKAECAECAFCwAUESIBdAJ2aJAQIAUKAECAESICJA4QAIUAIEAKEgAsIkAC7ADo1SQgQAoQAIUAIkAATBwgBQoAQIAQIARcQIAF2AXRqkhAgBAgBQoAQIAEmDhAChAAhQAgQAi4gQALsAujUJCFACBAChAAhQAJMHCAECAFCgBAgBFxAgATYBdCpSUKAECAECAFCgASYOEAIEAKEACFACLiAAAmwC6BTk4QAIUAIEAKEAAkwcYAQIAQIAUKAEHABARJgF0CnJgkBQoAQIAQIARJg4gAhQAgQAoQAIeACAiTALoBOTRIChAAhQAgQAiTAxAFCgBAgBAgBQsAFBEiAXQCdmiQECAFCgBAgBEiAiQOEACFACBAChIALCJAAuwA6NUkIEAKEACFACJAAEwcIAUKAECAECAEXECABdgF0apIQIAQIAUKAECABJg4QAoQAIUAIEAIuIEAC7ALo1CQhQAgQAoQAIUACTBwgBAgBQoAQIARcQIAE2AXQqUlCgBAgBAgBQoAEmDhACBAChAAhQAi4gAAJsAugU5OEACFACBAChAAJMHGAECAECAFCgBBwAQGvC/BXAHwdwC0A9lvwMT5jf/4ZgPsAzOYpwz66H8D3HeJ8M4B9AL4K4A8s91wN4DEAO7J/tytjts9p2+1Z+/bkqdfOfNb372U/OATg0wBOmAqGAXwz++/PAUhk8TLuYR9Z+2C1xajOrq8OIaVihEDdIECx6cq4mMu5Rvx5v01sssYZu/hljbd28d6oh+mEEa8LxWDXY5yXBdgQQOZUswAbznzQ4m2z43KVKUUIrYJjJYNhhlncrY63K2Mla6lkMIuvUaeVxIbNf5wV+Fz2mfuaq58kwHWjIdSREhGg2LQKnNNYYMSoXHHJSGTs4leuOGQVYcMnTCvezCYcVo2wxn/XY5xXBdgqEGYBNoA2O9MobxDCAJYBbmSDBglyZcuG881fLivJzMJu2GTU+x0ALLuMmLJYQ5StZVgGar2sZXZmM/B89ppF20o88wOBmZzHTfYZfbDDNN8IQIlxi24jBGoeAYpNgJPYxBxtTYSsAmyNeeweNlLHhNOI5da4zcqwUUw2SmjWBVbu89l4z8qwEcpC8d/1GOc1ATY7jDlrEsBHbYBmQ6eG4DExMwR3Iju0ekd2SDZfGetwNXOWOZtkDmTibX7KMwTPKGtXh1GmyyT+hqNziam534Zw2om9NXrZ1Wv8zdx3Mzk7bITdzmYj0BQzbF/z0ZU6QAjkQIBi07tTeE5ikzk5eBrAeosg2sU8cwy2CrDx71z3sXjFYh+LdU7jv+sxzqsC/DKAJ01PQ9YnnVwCbH7iKZRh5spCb81msndnRdxuWPZVAEvZJy7rsIYdQawZutU2O0LnIpr5XjuxtYpy3Gb+t5CQG/dYh3BIjEmf/IqA8X2k2HR5ZpsrJhgCzOZjjVE3c1JixyO7mGeNZyyBsGa3dvO/heK/Ods2l61qjPOaAJuByPWUZTdcmmuOwajPPNbvFGCjTrMAW4encznObj7XnJFayWEdSjYWnBV6QrMb2raOBhhDNubFCeb2zW0bfc01H2192PBrMKZ++xsBik1AodhkF2MKCXCuOG63zsWclFnXuFjZaRf/PRHjalGA8y2wKrSCLp8I5npiyiXA1jlg8/CynVDb2Wa0WUkBNp4YjQVYucTXbL9VxNlQu9M5dH+HZuq9HxDIJcAUm+y9bzfFlSve5htRNN9jF5ftdsuYxbfQlGTVY1wtCjBzgpXoDNgBANYnLDP4hRZfORFgO2GyLviaybPIKZcNdgLsZAjaLgO2Dtmw+RBjcYJ5a5K5zXwPB9aHhEJPsX4IwNRHfyOQbw6UYtOV3CgkwOYM17qyOt9CLWM00zz/a16XU2z8L2Rn2VlfqwKca4jBWITFnGAWmGIyX6NuuyFoOwG2Os3pIqdcw+3lXoT1u6bFCQY5zUHC7qHATtirTs6ys50qJATKg4CTRUhGS/liBlvJW6+xyekQtHm00Do96GSh1p/kWONSKP57IsbVogDn22Jkt1Ku2Mw3nwDbEcI6bGEM+bK9bfm2+eTKuI0vZH92sYH5ocJ6j13mbJ6bMRayXbAcJmKUyZX5mp8c8w21lyecUS2EQG0hkEuAKTYVNwRtjjO59hQbscqIi6wF81alb2VHHP/BdMhSoQSD1eGJGFeLApxrnqXQHKxBDaMc+zfbT5ZrSNUuA2b35FqIZZe5WuloXeRkbtvJQRx2NuU7iIO1z1YMmud/c20+Z2Xt9lZb+2A3z1Jb4ZOsJQTWhkCxc8B+jU0GyrlGz3IdCMTuM2JlrnhrxCpjxNHurAg7L5t9kav9qsW4WhRgBqpVhK1Zbj7HrlWArU9P7N92K6vzHYOWi5CFjqLM9VCQ6yhK8wEcxspqO8E2iGrNiPMdOrC2EEZ3EwK1i0Axc8B+j03My3bxLt8qZLMA28VbM6bmMw6MNS5O4r8xHedqjPOyANfu15MsJwQIAUKAECAECiBAAkwUIQQIAUKAECAEXECABNgF0KlJQoAQIAQIAUKABJg4QAgQAoQAIUAIuIAACbALoFOThAAhQAgQAoSAFwSYHxq6sT2jCn/ZEAmO8Rz/tbff3rcAQCP3EAKEACFACBACWQTqTitcFeD1m69f1xHtel9DQ8fD/Zt29XOcqk5cOHQkHl/4rZmJsbdGRt5iQkwXIUAIEAKEgI8RqFetcEWAh4aGJC6w4bbWjg33tjZvuH9d11AIWUs0TcX87OnFpaXp7yzOj/z48Jsvslf/ZXzMPeo6IUAIEAK+RKDetaLqAtzePnBN/6Yb7mvr3PiZltYNg5FIs60NycSCHFuePL4wM/LoyeOv/f3s7Bg7TpEuQoAQIAQIAR8g4AetqKoA9w/sfGBg0+772jr63xdtbJN4XshLI1WVkYwvxBbmRl+4MHbgfx4/8sY/+4B31EVCgBAgBHyNgF+0oioC3NOzrb+lo+/hzVvef0u0ob01EJA4jgM4joeqqgWJJsspJR6bmZy4cODpyfGzXxwZOcpeUEAXIUAIEAKEQB0h4DetqLQAc93d2x4a3PLeL2zctLtZFAOX2mMC/NDn9mBlJY2R0VmMnJ/F6Pk5LC4mci5/VuS0OjF2cOLs2de+enb4ne/WEe+oK4QAIUAI+BkBX2pFRQR4YGAgFA739wlS9NGhq2/e2djUydsx6+N7tuOOj1x76SNNAxaX4jg7Mot9rw7j5PCULSFjy5OpsZHXn1cF7cHE/JmJo0ePpv3MXOo7IUAIEAK1iIDftaLcAixs2rRrW3P7xo82Nnf8l76NN7Tkm+cd7G/Hf3zwdkhB8TLunDo9jcd/+AYmJ5dyZsOynMHMxJHx2Mrc1+enzj5//Phrp2jvcC1+BclmQoAQ8CECpBWAsfln7e5vaupt2zCw5e6Ojk2/0dret6u5Zb1QqPrGxhA+e/8HkJEViAKPTQMdEAQ2L6zh+KkJ7H/lNI6dnEAmo9gaqGkaVpYnU4uLF/Ytzp175MBrbz8FjMfX3huqgRAgBAgBQqASCJBWvItqWTLgroHtt2/su/7X29o2/mpLW0+TKAbBVlkxgcx38TyHTYOdWFpK6MK747pe3PzeTWhpiei3zc2v4PU3z+G5l04gHs89yizLaS22dHFmcX7s0fGLR/5++NiBNytBHKqTECAECAFCoHQESCsux25NAtzYuKG9u2/oSwObdn+8qaVrKBxu0vcVMWH9+J7rEJJETEwuYWJqCZNTS1haTub1XDAoor+3FR+67Wps39qDeCKN5186gedfPpkzCzZXmEoupZeXLh6ZGD/01Pmzh745MzOzXDpV6E5CgBAgBAiBciBAWmGPYskCvH790K/0Du78w8HNu4ekUEPIOtfLFlft+fA2yLICWVH1n0yAxy4s4NSZKbx1+Dxk+cotSGx1dDQi4eqr1mNsfAHzC3Gk07JjDqiqoqVTsfjE+TcPnzt78POjoyf2O76ZChIChAAhQAiUFQHSitxwFivA3K5dD4hzi4cevXrbhz7ZuX7w8tVTpnbaWqPY+8U7wQTVfJ07P4dvP/ISYrGUIyez+wuMZOesZ256eGVkeP/fhKTU5w8cOEDHWTpCnAoRAoQAIbBmBEgrHEDoWIAHBrZ1NbZsfH840vLw4FXv6w0GwwWr/08P3I7u9c36IquW5rA+z8uuk8OT+NG/HsbFi4tI51hgxco2NYYwuLEDE5OLmJqJ6Vl0sVcqGdMmLxw8srKy9DtL8xcOnjx5YKbYOqg8IUAIEAKEgDMESCuc4cRKORLg9T1bP9Lbf+1/6OjcdGfn+sEAO8HKycWGkYMBAXMLcXzw5qtwzZYutDRH9Kx4YTGB518+gTffGtV/N1/s882Dnbjzjut0AWafs4VYR4+PY2Z2peDiLqttqqpgcW5keWT4lR/MzU5+YXz8JImwEwdSGUKAECAEikCAtKIIsJwK8Mah9x7p37hja/eGrZwkRYtrIVs6EBBw/bUbsHvnRlxzVRdEkcf5sXk8/tQBjJybtQgwhy1D63DL+zfj2q09YPcqqopjJybw+oER/WdzcwTszUmTU4XXWWXScS2TWlTS8enM2Pl3Pnzw4IuvlNQJuokQIAQIAUIgJwKkFcWRw1EGvO2Gj51ta+8fAFQ0NrSiY92m4lrJlmZbkzraG7B9azcaGiRdSNmccK59vq0tEezc0Y/bb92iD2Gziy3KYoLN9hCPTyzgB08dzJkRM4FenBuVo6EgWprauEAgkDl27MUPPfPMY+wVh3QRAoQAIUAIlBEB0oriwHQkwNftuutMd+/2wUwmiXRyGaqcQv/AjQhKq/t1i71EUdAP3kimCq+LYkPYbK/wZ+55D5ggm6+Lk4t4+NsvYDl25famZDKG+MKZ9Iaeq4TGhlY+FIpyy8uzyaNHnyMBLtZhVJ4QIAQIAQcIkFY4AMlUpCgBZvexwzVkOYX5mRG0t/Whp29bcS2aSrOTr9raojhwcDRnFssWY3349mvwgfcOor2t4bK22PakP//2Czh3/vIh7NmZYSUiasqmwZ0B9gII/dVLAEiAS3YV3UgIEAKEQEEEDAEmrSgIlV6gaAE2V7u8OIlkYh7XbLsdghDQXy/o5GJblO6+6wbs2N6rFx8+M4UnfvgmpqaX9T3Dua6GqIT+vjb097L/WrFhQwte3HcKz714ApqqIJNJakuzxzMb+7YK7e19V7xsmATYiXeoDCFACBACpSFgFmDSisIYrkmAWfWynNaz4a6uIUQb2xEONxVsNRwOYM+Hr8XOHX363C7LUBOJNJ598QQOvDWKVFpGY4OE8YuLeetiJ25FwkHMzc1qqcSsFhIVpb/vepG9b9juRhLggq6hAoQAIUAIlIxALgEmrbCHdM0CbAw1xJYm9RMzWlq70NbWC17IeUbHJUvYquhbbhrCVZs7weaF2UsYhs9MY35hRd+G9Gf/41ks5zm+UlHSyKSWFC0T09Z39vAtLd15U3AS4JK/V3QjIUAIEAIFEcgnwKQVV8JXFgE2qmVzw/HYHMKhBrS0dqOhsb2gw9hBHZ/8xA5s3dKlZ8Lm65/++Q3sf/W0bR2xpYuqyKtaQziMzo5+PlfWe9kwCC3CKugPKkAIEAKEQKkIFBJg0orLkS2rAK9WrSGZWIYip/WVzht6t0MQAzn9uX5dE3bd2I/t1/Sgs7NRf4GDcR09fhF//Xf7LzsBS1VlLMycVDra1nPNjR1cQ0PrpUVWhUhDGXAhhOhzQoAQIARKR8CpAJNWrCJQAQFerVhRMpDTCSwvTqC371o0t/bYepVtM5KkgH7YhiSJ6GhrwIbuZvT0tCAcCuLRJ17T9/6yiw1zJ5YvaFuGdiESaeTYwq9iLhLgYtCisoQAIUAIFIdAcQJMWlExATbcxrYtJWIXERBE9A68p6A3dYM4Tj+ukv2u6tueMpi+eBg963rR03M1rG9eKlhptkAsNgNRPIvGxsLnWDutk8qVF4G9e/c64mR5W6Xa/ILA3r1787+k3C9AVKifP332CJrariqpdi9pRbWSNUfBrpSnGqsHMuk40olJrO/ejlCoCYIYLOgklkWn4nOQk1MY2vwehEKlHYNpNEQCXBBy1wuQALvugro2gAS4su5diwAblnlBK+pOgBm4mqYgGZ9GQJTQ2taHSLTNdhScvTxBzsSQScyjpbER3d1bysIaJsCCcAZNTaWd4FUWI6iSvAiQABNBKokACXAl0QXKIcBe0AomwEeOPPNLzz77REXfG1C1DNjsdjkTZ9uH0NzShYaGTgSC7wpiMr4AqAkERWBdRx8ikeayMYYJMM+f1gXYuuK6bI1QRWtCgAR4TfDRzQUQIAGuLEXKJcCGlW5pBRPgw4d/+ssvvPDD/frK4gpdzgR4511nu/u2D5TTBvaihExqUZ8bDkpRtLZvxNL8KKKhEFqaW9DS3FXyXG8uO5kAc/wwmhoj4Hlnp3aVs89UV2EESIALY0QlSkeABLh07Jzc+a/PvIPm9vKMWBrtuaEVTIDfeucne1567kdMgIt/Eb0TsByuguav23nX6XILsGGfIif1lzswMd62ZReamzsQDFZmkRQTYA0n0dwUhSBccVKlQ8ioWCURIAGuJLpUNwlw5TjAFlGxDLjcAuyGVjABPnDoRx/b/+JPmACnK4Va4Qx4FwLXaXedrJQAs44xx63Mncbtt33K8XnSpQDCBFjFiVUB5gUahi4FxArfQwJcYYB9Xj0JcOUIoKgKnn7uWMUEuJpawQT49bd/eOcr53+6D8O6AFdkGLqQAPMYQuC65ruOd/eWdwjaSoOV+TO4/dZPVY4dbB9xVoDZEDQTYBqGrijcJVVOAlwSbHSTQwRIgB0CVWQxlkQxAf63F46jua28Q9BuaAUT4NcOP/mJV4d/th9jugBXZBi6kAALuAnB7emPn+zp3bH66qIKXdUQ4Pn58dQv3nnqrgMrz+3DAaQqBWqFIKqLagsFQBLgunCzZztB/KuYa0grSoC2sADvgrQleeuPNvTdcKsoNQQ5Z4dnFW1KJQWYbWtajs2kRkffOfDmyLOfGxNPvkMCXLSLynIDBcCywEiVlIgA8a9E4ArfJoC0ojBKlhKOBLgr0bt9fdO2X4uG198XjqzrFET71/0V3brphkoJ8MrKgjYzd250fPL4vxyf2P/YeMf4MSwgQQK8Fm+Vfi8FwNKxozvXjgDxb+0Y5qhBF2DSiuLwdSTAEBAO8WjckN7x0cZw7681RXpukcLtAY4r31aecgswm5OYmDiZHJ89+ePzC0efPicf+rkipRcSCSQAJPBK5cb1i3OBv0pTAPSXv73WW+JfxTyiCzBpRXH4FhbgXgTRh3AYCKuSFG5ONA+28YO7G/me325sGVwniqHiWsxRupwCHI8vacOnX508F3v7TyeU04dWAgsTspqOpzKIQ0IcI0hWcmVbWQCp00ooANapY2ukW8S/ijlKAGlF0eAWEmAOvQihFSE0IRziEBIDwTDPCVEJDe1t84O/u679+tvC0XXvvkOwaBNWbyiHALMN26Ojh+VjI/uevSAe+ZsYPz+lBriYrGXiaRVxaFih4ecSHVSm2ygAlglIqqYkBIh/JcHm5CbSCicoWcoUEmBgFwKIIYR2hENAOBAMhhVRCwuqGFYFLdw41f7B3oYbf6Op5apOQQgJpR7xuBYBZousksll+e3jz4wfi73835ejMydUjUvwaSWuIhOTNawkFaxgFgkc1Vc/Z0rAim4pAwIUAMsAIlVRMgLEv5KhK3wjaUVhjIoWYGB1bD+IEMIISyrCohgMC6qgCzCvCSEkhfbu1Nb725q27AqHOjpFMVxY2C2GlCLA+uurkkvq5PTZ6bdPP/3GufDb39N4Nc5zSKiKElM5OabIWE4CMUwhiXVI4gXIRaNEN5QNAQqAZYOSKioBAeJfCaA5v4W0wjlWekknQslhF0Q0QoKCMCSEgzwiohoIC6oW1jhR4nk+rGpaqHGx7cZOadsvt0QGd0hSS4jjnY9MFyvA6XQCcwtjsZGJg++cmH71paXG6bc0TknwMhdXOWVZU/klmUvHkgksI41kdtWzWqkTTYrE3bfFKQD61vWe6Djxr6JuIK0oEl4nAsyq5LFNF+EQmhEKJRFVAwjrIixoYVUTQ7ymhXmOlyBzbesyW25rDmy6pSHc1R+UmjknOl+MAM/PX1DHpo+dGpk/+IsL2rHXMlxmnueVuKZwKxqnLqvILCoqlhJzWEEMCQzrQ85MfOlyGQEKgC47wOfNE/8qTgDSiiIgdirAqyI8hADWIwgZkZCEiCogIvKBiAAtpGpCmBch8Rof4ngtFIl3DDVqG65vFTbvaWjqC/N8/pcfOBHgTCaJc2OH4qdn3/i38dSJt+LBuVF9rhfqClRuWVOVJU3LLC4JWAab811GCgf0IeeKnONZBM5UNIsABUCigpsIEP+qgj5phUOYixHg1SHrbQhgHYIAQiGgQRQQURGI8oIW1jQhxHMI8gKv/4QsNETljp62lU3/rrVl60YpxLJh+6uQAE9NndVOjb1yfDT91o/muakxTZSXeY1LyKoaEzRuCby6kEymFxMqYvo2ozF9sRVlvQ6JUK1iFACrhTS1Y4cA8a9qvCCtcAB1sQK8mgmzhVk3QWRbk8JsPlhBg8IFIoKiRXhRlDRNC/EcH9RUBDlOC4qcGI5Odd/R3bDjY43NmyXOJhvOJcCqKuPosecTh6ee+YelpslDGi8nNBlpTeBXNFWNabKyqKX4RVVKLa4IiOHpSwdskPg6IEC1i1AArDbi1J4ZAeJfVflAWlEA7lIE2KhSwBBEtEOKhtlQNKIyF4yyOWGeF8K8poVUlg2rfFDjIfKaFhRSkc6u5HX/R0vjNZuDoeYQz4uX2rcKcCaT1hYWLyQOHfvp8DD/87/WIvyKJitpleOSvKbG2ZBzhlcXlHR6QQJiC2P6XC8bbq7IWyuqSts6bowCYB07twa6RvxzxUmkFTlgX4sAG9kwj+shIYRQKICoKOgiHFndoiSGeEELaLwQEKCJmgaRB8SG2d4Pd0Suu60x2jsgBiIiO9LSEGBFkRGLTafPXzxy+sjFF/fNN47uUzk1rWrI8Kqa0DQujoCe9S4pydRyrAErePrSm41orteV75fzRikAOseKSpYfAeJf+TF1WCPLhkkrLGCtVYBZdawOHgOrC7T0bFgIRRRBjfCKFtYghII8gpqgibwmiBoggtMEfiHSu47f9kvN4cGbQlJbZyo2wb1n50e0ydmz4+em3th3NnPg2VRgZU4FJ6sa0rr4ckpMlfllRUwtx0XEcAopWuHskP4eKUYB0COO8KkZxD9XHU9aUQEBNqpk4LKN2EF9t3AQEUmVwqKgRYSAJgmKFtQgioIAUVM1HhwEThGk1vjADVGu/wPKcuK23sG+l07PH3hpJnzuLWiKqgKyAi4laEpc0bgVhU/HEstYoX29rn6J1tQ4BcA1wUc3rxEB4t8aASzP7aQVWRzLkQFbXfLuZmwBUpitktYQErVgSGTD0RoCIi/yGjRBVMFrArhgItrKL0c3KtGV84noyiynQpVlTlYEOc2rXJy9SCGpYgVBJDCLNG0tKs+3wI1aKAC6gTq1aSBA/PMUF3yvFZUQYMPDqxuyWyGBRygsQFIhhQLiqggHRI0DD15U2KrqgH4POy0jo0LlIMuyyKW5dCqZTCIBDgnMI4Wj+iIrWt3sqe9QccZQACwOLypdXgSIf+XFs0y1+VYrKinAq765BwJezx7gEYQUDoBtTwpIvCSoHARJAjRZ49NpgAtwSjrBKZyYTCcUpPAL/BYy+DI03AbgZYuzbwawz/S3WwDsN/27HcD3Aeyx3PdVAH+QgzhfAfB1AHZljPa+A+Bz+juFy3tdDeDfA/j9CtRdXkvXUBsFwDWAR7euGYEy8M+IEcyWnwG4D8BskbHJ2g834w6Lk98A8GWbfqwZ76IqWItWqEhiEula2wlTeQFe9QCP28EjhQB4iMgg2CBCUAUIkRA4xMH+B06GssIjA/bfAexGCs9lz7CyiqtVfA0/m8sxQXsMwI4aEOBKi3tR34NKFi5DAKykeVR3nSOwBv6FAXwTwIMWiA4B+DSAE9m/O4lNXhFgI0ZO5HiQcIMNxWtFABl0IoMnam8LarUE2HDkKrgj+iEeAsIQWhvBYR6Yj0GFBPbWXhnDeAjA3hzZrfmLcH82y7V7gjS+CPkyXq98EUiAs57Yu3dvtTnpRpChNl1CYA0CbHxHzYJrjTtOY5NX4o4XBbhYrWDnPrBpyZqcmnQj2BltssOhOQyBx7AOHtvDGwLwJ9mnTEb0SQAfBWCX2TJHGU+edkQyvhyGSDv5ypcyFGR94rUbombDVN8zGWAuY/2MFTNstmbx1qdtJ33yVJk1BEBP9YOMqU0E1sA/43tq/u5a405HdtStUGwqhwCvNe7YZepGsuKVuJNPK5he1Pzb7dwQYIN8dm0zAWbDPGy+90nTkI+dAJuHTQzCGMQfzTFcVEiMixVgO/FkNpjnhnKVMb7Id1vE2RDgN3IMode0CK8hANZmxCerPYXAGviXT4CNuMN+smmvfLHJGKo24+JG3NlpWUPD7GEC/LgH446dVtTFoUtuCnChL6Z5OMcswMaTm1nkjAVXXdmseCbHAixzdmnXvnmBRS77DOHsNxHVEHazzcbTpDUTtz4ssC+k3RC09W/MHmMOqtCDRCFsXft8DbH0+y8AACAASURBVAHQNZup4fpBYA38sxuCNkTZeChmGTBbGJovNuUT4HxAVyLu2I0c1mXc8SqD61WA7Z5EjS9LrpWL7J5iBNjIXK1DztYHhDssGa6deNoJsHUYqFKrr6vKzTUEwKraSY3VJwJr4F+uRVgMqGoKcDnjjp0A12Xc8Sqb60WA7bJKK+bWLHmtQ0HGF8G6yMtKarbA2271pPlBINcirFzD19ZV4V7l1xV2rSEA1kwfyVDvIrBG/llFmD0UDwAwRt7sMmAnsamYIehyxp1ci7DqLu54lZG1KMB2hLYSycg6zVljpQS4UAZs3SNozrKNbNjJKmjzoomazYbXGAC9+j0iu2oEgTLzz41FWE4zYCdxx8kq6LqIO16lZy0KsN1Sf+OJzW4Vn5EtFjME7eQgDidzwGxFt928rfWJ125e227Rh105r3LL1q4yB8Ca6jsZ6z4Ca+Cf3YO/Ne44iU12IBSTAZcz7uTrk/khv+bjjvvMs7egFgWY9cTJZvdc87n5hm+L+SKwk7BytWE3vGznAcMWa3/YA8C38iwkK2Zvs6e4t4YA6Kl+kDG1icAa+JdrDti6psRJbLKC51bcsZvvZacEftfmBEFmc83GHa+ytVYF2E6E7YTVKpCF5k6L/SLY2WE3PGz9UtptJTLbahDd7jjNml0BzcBaQwD06neI7KohBNbIP6sIu3kUpZN9wE7ijnm+14hdEZuH/5qOO16lqJcF2KuYkV1rQGCNAXANLdOthAA9ABIHvIUACbC3/FH31pAA172LPd1B4p+n3eM740iAfedydztMAdBd/P3eOvHP7wzwVv9JgL3lj7q3hgJg3bvY0x0k/nnaPb4zjgTYdy53t8MUAN3F3++tE//8zgBv9Z8E2Fv+qHtrKADWvYs93UHin6fd4zvjSIB953J3O0wB0F38/d468c/vDPBW/0mAveWPureGAmDdu9jTHST+edo9vjOOBNh3Lne3wxQA3cXf760T//zOAG/1nwTYW/6oe2soANa9iz3dQeKfp93jO+NIgH3ncnc7TAHQXfz93jrxz+8M8Fb/SYC95Y+6t4YCYN272NMdJP552j2+M44E2Hcud7fDFADdxd/vrRP//M4Ab/WfBNhb/qh7aygA1r2LPd1B4p+n3eM740iAfedydztMAdBd/P3eOvHP7wzwVv9JgL3lj7q3hgJg3bvY0x0k/nnaPb4zjgTYdy53t8MUAN3F3++tE//8zgBv9Z8E2Fv+qHtrKADWvYs93UHin6fd4zvjSIB953J3O0wB0F38/d468c/vDPBW/0mAveWPureGAmDdu9jTHST+edo9vjOOBNh3Lne3wxQA3cXf760T//zOAG/1nwTYW/6oe2soANa9iz3dQeKfp93jO+NIgH3ncnc7TAHQXfz93jrxz+8M8Fb/SYC95Y+6t4YCYN272NMdJP552j2+M44E2Hcud7fDFADdxd/vrRP//M4Ab/WfBNhb/qh7aygA1r2LPd1B4p+n3eM740iAfedydztMAdBd/P3eOvHP7wzwVv9JgL3lj7q3hgJg3bvY0x0k/nnaPb4zjgTYdy53t8MUAN3F3++tE//8zgBv9Z8E2Fv+qHtrKADWvYs93UHin6fd4zvjSIB953J3O0wB0F38/d468c/vDPBW/0mAveWPureGAmDdu9jTHST+edo9vjOOBNh3Lne3wxQA3cXf760T//zOAG/1nwTYW/6oe2soANa9iz3dQeKfp93jO+NIgH3ncnc7TAHQXfz93jrxz+8M8Fb/SYC95Y+6t4YCYN272NMdJP552j2+M44E2Hcud7fDFADdxd/vrRP//M4Ab/WfBNhb/qh7aygA1r2LPd1B4p+n3eM740iAfedydzvsQgD8CoCvA7gFwH5L743P2J9/BuA+ALN5yrCP7gfwfYco3gxgH4CvAvgDyz1XA3gMwI7s3+3KmO0rZ9u5zA8D+CaA9wP4NIATpoJWe+1waM9isyd73yGbeowyzBcME6PNB/Pcwz5ivvlegTIF3eIC/wraRAX8iwAJsH9970rPqxwADQFkfTULsDXoG1iYBSNXGadCaBYjq7haxcxo3yxqVvG1K5PLh/nazud3Q+SswmnG0Xy/uV+5+pSrLuaPN7OCb4ivnR+s4purjCM+V5l/jmyiQv5FgATYv753pedVDIBWATMLsCEoZnEwyhuiYggKw8nIBg2BypUtG5haBcssVGZhN2wy6v0OgM8BiJgySUOUrWUSORyYr+1Cma9dFmq21wk2Rh9YWyybZnWa+8/68fkspqwMGwUwMB413WP02/wwYRXtYkYj9EaqyD9Xvl/UaG0hQAJcW/6qeWurEADNgsEEdhLARy0ZsJ2YGYI7kR3uvCM75GkIChM8axnrcLU1W2PiwsTbLECGoBhl7eowynSZxN8Q1nzibx6mtWvbjj9mgXsawHqTILIhaKsAGsP4xgMLE8EnbYTTjIW5/+w+1he74X67hxO7fht/M/vG0XejCvxzZAcVIgQYAiTAxIOqIlCFAGgE8ZctwmDOgPMJsDnjtWLjJAtlZW7NZrJ3Z0Xcbqj2VQBL2WyQtWPO5sxCZPzdmqHb+a1Q2/kEmM3HHs9m3mbhLyTAdnPXrB27Pljnf832mDN3c512YuvkYcSW11XgX1W/T9RYbSNAAlzb/qs566scAO0yKoaZ3RB0rvlPA2PzHKfToU+jTjtBsfOduV7rgiZWvpiMz67tQnyxy7zthqCdzDHb4Wlg+Mc2C9nM2bs5y3cyWmE3ikACXMjb9LnrCJAAu+4CfxngEQHOt8DKbuWuWXzXKoJ2C8Ps5pbtFj7Z2ZaLQOUSYPMDi11bdhmwWUzNDxVGn+xWpBt1WzN9EmB/hQhf9ZYE2Ffudr+zHhFg6xCpkV0OADAPv7K/m8W30OIrK8B2Img3j2xd8DVjWoRliFWxw67lFGCrCLMHATZfzBZTWQXYLL7Wz/LN/xrYWftpNxdfLBaX/FJl/rn/hSMLPI0ACbCn3VN/xlU5AOYagrYD1k4YzUOtxWS+Rv1OBdg69NuR3T9sFny74eF8BCm3AFvbMi/CMvZFm7N26zC94QtWD1vpzRa12WW3VnG9xgYLWoRVf6HBlz0iAfal293rtEcEON8WIyNrM4t3sZlvPgG2W5xkHYJmAmwc0mHNgJ0OQ5dTgK3DwnYPA+aRArthaeOefzDN/+bbDma3JcvAwk78HZG6yvxzZBMV8i8CJMD+9b0rPa9yAMyVAeeaAzYLba7DJxhuRjn2O8v+rMPW+QTYOpxr9oORNeabozbErVBGnEuA8wlzrjpzYeHk4BDWP2bzc9lMttgDUdj95mFtAy+nDyKX8bzK/HPlO0aN1g4CJMC146u6sLTKATDfELRV5KxZbq6TqMohwKwOJ0c75juKspoCbPfQUGjFtpmvTIDPmA7gMB9xycqZ+5lLWM0iXJL4soaqzL+6+M5SJyqHAAlw5bClmm0QoABItHATAeKfm+hT21YESICJE1VFgAJgVeGmxiwIEP+IEl5CgATYS97wgS0UAH3gZA93kfjnYef40DQSYB863c0uUwB0E31qm/hHHPASAiTAXvKGD2yhAOgDJ3u4i8Q/DzvHh6aRAPvQ6W52mQKgm+hT28Q/4oCXECAB9pI3fGALBUAfONnDXST+edg5PjSNBNiHTnezyxQA3USf2ib+EQe8hAAJsJe84QNbKAD6wMke7iLxz8PO8aFpJMA+dLqbXaYA6Cb61DbxjzjgJQRIgL3kDR/YQgHQB072cBeJfx52jg9NIwH2odPd7DIFQDfRp7aJf8QBLyFAAuwlb/jAFgqAPnCyh7tI/POwc3xoGgmwD53uZpcpALqJPrVN/CMOeAkBEmAveaOObdm2957gEpYa/jd116zKadAAKNCgaex3DTw48ByPR1fe2SSovCyHtDSXbo5N/sk/rNQxLNS1KiFA/KsS0NRMUQiQABcFFxUuhMD63/1oVAhIfRqnboQidPK80gGN7wDQCqBxk9D6v6uaBibCKqCLr6YBPAdwGocxdfH/1QBZA9IAVngNC+AwA2izqsZNCxp3QYtIZ8bwxAL26lXQRQhcQoD4R2SoJQRIgGvJW160de/tYl+m6QZFwfWchms5XtukaVivCy6HKIAoNP2nVKL5CsdhRdUQ54AYgEVomNOAUfA4zqs4IvOhNyb+2xPTJdZPt9UyAsS/Wvae720nAfY9BYoH4J7H7xF+/lbmOijKxzQOezigl2W3ABqyQssXX2vRd6ShIQ5OiwHcNMD9Ajx+HAjy+0f2PrVQdG10Q80gQPyrGVeRoQUQIAEmijhGYNPvfaQ5LUQ+oanq/w3gWoALQUMQHNzm0eqUMhu25riLULnHNCjfGf+jH5/XR7npqgsEiH914UbqhAkBtwMnOcP7CHADv/3J5rSUuYPjuIcA7nrgcsEVBRFNoSiiwTBmVxaRVjJQVEVfYFXKxXFM0dmiLA7sd7Y4i+d5RKUQOhvb0NXcAUVR8PPhtyCrTHevvDQgxmvct1Jh6ZvTmJ7B3hfkUmyhe1xHgPjnugvIgEohQAJcKWTrod4HdgV62jZs5zh8SVO1/5XjIFi71RZtxm1X78JNm3egKdyAqeU5HLkwrP83tTSPlXQCyXRKF+OgGNAXXaXlTE50mOC2hBvR396FgY4N6GhsRWdjKzoaWtAgRXRBVjUV//SLn2LfqTehqAXWYXE4B+ArnBT6ydjeJ+bqwS2+6QPxzzeu9mtHSYD96vkC/R76z/+LlIyKd2oc90fQtM12xZkY7h7Yhhv7t+oi2RptQlQK6xkrW+l8YX4KJyfP4czUecTTSfS3dSGRSeHNc8ewnLTfXSTwAjZ39uKDV+/GjRu3QuCvnE6eWJzBXz7/ONhPZxe3yAF/pWrqX4z/0Y9Hnd1DpdxEgPjnJvrUdrUQIAGuFtK11I6mcRseuusecPgmgJ5CpgdFET0t67CxvQd9bevR1dyJ7pYORFnGCiCjKIinE2gMRRBLJvDcsV/gxRNv6KJsXEy02xuasXldP7b1bNL/awyxxdPsfhnjC9NIpJN6JvzqmcN45uirSKRThUx793MOC9DwXZEP/Om5//rkRec3UsmqI0D8qzrk1KA7CJAAu4O7p1vt+9LHt6sa/12oeE+xC6zCwRAGOzfg9qvfg+t6h/Rs2HotJmJ45sgreO74a/oQMhPV7RuuwtaeQQx2bNCFl2XX7LMzM2N4+/wpnJ46vyrAja0YX5jCTGyhlDnmixqnfXlcCn8fe59g+4zp8iACxD8POoVMqggCJMAVgbW2K93w0F1fBPB7gNZcSk9CAQm9revR07oOkYAEKRhESJQQCgTBPpMCQX0e+IXjr+PExRGsa2rDLVtuxA1916CjsUUfvh6eHMXrZ4/g7MwFTC3NIaPknjcuwkY2Ff2PgPZFGoouArUqFyX+VRlwas41BEiAXYPeuw33PPSJRzngXuDKRVdOrTZWLrOVzOx3Nper/43j0NXSgdZIE45fHMFCfAls3jcSDKEhFEF3c6cuthcXprEQX865ytmpHTblDvIC98D5b/zojTXUQbdWEAHiXwXBpao9hQAJsKfc4Q1jer545z9yGscEuKwHanQ0tOqLq3YPXqtvKWJzuIfHTuLAyFEMT41ic2cfPrztfZDEAJZTCcRTCcRSCSTSCawkk1hJJfRV1XMri7o4s9XQxV4BSTgpSfxnT3zpyf3F3kvlq4MA8a86OFMr7iNAAuy+DzxnwYaH7vw7gPsMALEU41hGKwoC1OwWoZZIE27bsgs3DV1/aWEVG2aWFRmjsxP46Tv7cPTCaWgc9HIfu/5WNIfZoVqXX2xOmK2g/v8Ov6QPS+faA5zP5tbuhnNtvZFff+lXv/tSKX2jeyqPAPGv8hhTC95AgATYG37wlBW9v/eJH2ocPlmqUTs3bsWe7TdjfH4aSTmJ9wxuvyS8sqJgObWCczMX8fLJAzgyfvqyxVTsUA+WBX9k6/vRFI4imVldKyUFAvp6MLYi+tzsRbwzdgrHLp7FUiKmZ8XpTEbfY5zvCoZEZeO29mPdQy0P/OPOP3ml1P7RfZVFgPhXWXypdu8gQALsHV94xpLVAKj9CsAVzQ+20Ooz7/uYPszMMmHzxVZAsb3Bzx9/Ha+PvINUVlytHQ8KAfzy9puwpWsApybO6adgbWzv1rcpsWw6JAb1VdJsIdeZ6TGcmDiHkxMjGJ27mPOQDzEoaBuGWtG7pe2YEOT+TxJgz9DtCkOIf971DVlWXgSKDrDlbZ5q8yICLABCWM2A9dMkizhR8pruQXz6vXegp6VTv41tHWJzt2wf8HIyjpGZcT17PT83kXcImZ2axQ71mF9Z0jPfiBTWT8fqb+/WV1h3N3dgfVO73sbZ6TEcPHccb4wcQSwVvwLSYFjUugeb0bOplZOiwaOqppAAe5F4WZuIfx52DplWVgRIgMsKZ31UZgRAlmXqxz5rGjS10AAvK8nhhv6rsa1nM5KZFJaSK/rBGyvp+OoCquwiqkQqWdL8LUOX2cTOnV7f1KEf9sGu09NjmFiYvqJOZn5TRwRMfNu6GxAICpBWBKw7GEB4/opTNevDeXXQi39Ln8Y59hroOuFf12CT1t7dyDH+cTxPD4B1wNFydYEEuFxI1lE9ZgHWX4zA1kJrgKpq+n+5MmJGpmgoggAvIimn9CFmttiqUtfqSxtg20ZDSwjr+hrRsi6KSFMQvLD6YgcS4Ep5o3z1mgW43vhHAlw+ntRDTSTA9eDFMvfBToD1QMgyEk2DogKqzN52VOaG11idIPJobAuhvacRTW0hhCIBCAFen8nmeBLgNcJbtdvtBLhe+EcCXDUa1URDJMA14abqGmkrwFkBuyRm4PRhaVnWoDAxZpmxCxfLzhuaQ2jrjqK5M4JgWIQg8BCyGe+q8JIAu+Cakpu0FeA64R8JcMm0qMsbSYDr0q1r61Q+AeaNQMivzscaAgdVg6IwQVYhZ5ggG4u3VoVZ//8iNXp1DTZTz+wLiDmAF3iEogFddKMtQTQ0SxD1ubVVWwz72EuUzPZRBrw2TlTz7nwCXOv8IwGuJpO83xYJsPd9VHULSxFgPTCaBJBlxGz+V1VWF3CxQzRUWVvd88v+Z/xkS7eyLDQyVSayrD42fByUBAQkAUFJRCAsIBgSIYqG4GZF1shwSYCrzpVKNFiKANcK/0iAK8GY2q2TBLh2fVcxy8shwGxo2C4DNQKlLrb6/0E/H5oTVrPXyz63ybbfzYBWF4etzg1mh5hJgCvGiWpWXA4B9ir/SICrySTvt0UC7H0fVd3CqgmwkTVnV1ozMSUBrrq7Pddg1QTYBf6RAHuObq4aRALsKvzebLyeBZgCoDc5Z7aK+Od9H5GF5UGABLg8ONZVLRQA68qdNdcZ4l/NuYwMLhEBEuASgavn2ygA1rN3vd834p/3fUQWlgcBEuDy4FhXtfQ+9IlHweHTHM/xxklExjaeXNtArKtQHS2CcWcO7nWOV/+v7+344zfryml11BniXx05k7qSFwESYCLIFQj0fvGuL4DTvshxXEtdCTDPaRy470HAl76/4/8ZI9d7EwHinzf9QlaVHwES4PJjWrM17t27l536LP6LcurqaWX5EQ3YpefAbLtPdktQLWfAPMeNC+B/L/TG/GN/9eBfycUfDVKzrq0Jw4l/NeEmMrKMCJAAlxHMWq2KBb7u7m7h4sWLUlNTU1CW5eA/LR64aw7Jh1QOg/UgwDzPzweS3N81nwt+q+2UOAkgfeTIkcwTTzyh1Krf6sVu4l+9eJL6USwCJMDFIlZn5e+55x7hpptuCqbT6aAgCFIqlZJkWZCAVPDflOGPTaor/y7Dq9dyAseuS0c9Wud4PTwHrPEqNy2lxR+0jwj/2Ho+fD4ajaYTiUQ6nU6nACT37t3LRLjIgzLrjAgudYf4R/xziXqeaJYE2BNucMeIxx9/XDh69KjU3Nwc5DhOSiaTUiaTkRSFl3hekVRVlV5Lj914gV++Iyamb1Y5tNbSEDQT1UCGfyu0IPy47UzwhfAcNxsOh1OKoqSCwWBKEIQ0+/306dPJv/orGpKuNguJf8S/anPOa+2RAHvNI1WyJzvfFgyFQrrwiqIoaZoW0jQtmMlkQkx8OY4LZlQ1PK2sdJ4TF3dMC4mb42LmOvBcxOMZsBrIcGdDc/wLoSnuQMsF4bSgSXGeF1KBANIcxyWZ8AYCgZQhyBs3bkzee++9NBxN/Lv0ghFj3YOZ6w6PQiX+VYlHtd4MCXCte7BE+x944IHAVVddFVxZWZHC4XAonU5LbAg6kZAlYFWANU3TM2KO40IpTY4sqOn22UB8YDqUunFRTF2vimjSB6bZec6WlzG4sQ2JB5cIJrgzoRnu1fCUdjI6L1zgUmJMFDk9482KbpLneV18U6lUkv29oaEhderUqdTDDz+cpqHoEglV5G3EP+JfkZSpy+IkwHXp1sKdYgGwp6dHamhoCLEMWJZlXYBZFszmgVWVlzhOCcmyJmmarIuxLGshRZNDGU2JJLRM43QovWm2IXntSkgdUgUtan4bUtUEGFCDK9yoNK2+HR7nj4bj3IwgC3FB4+I8zydFUUxxHMeGm5PZn/q8ryCwbDiQCoVCqYsXLyZZJswWZu3du5e9SJGuCiNA/CP+VZhiNVE9CXBNuKn8RrIAeMsttwTPnDnD5oDZMHSYDT8zIc5kEJLlREgfgs5kJECQFEUOq6oaBFRJURRJUbQQwMrJUkaVIwtRuXspkumNR7SudBgdakBj93MQ2JsWwLFFXPpbj3j2AiN+9U1GtgdxXHqLkqZn1uA1jgfbv8vKq7yKjJjU5sUFTIQWMBaZwjkhri0xgWX/AWJKEDQ2zMxENwFIKUGQ05IkJTVN04WXCS37qShKgmXAPM+nI5FI8jd/8zcpAy4/1WxrJP4R/6pENU83QwLsafdUzjhN07ivfe1rEpsDfnf1Mxt+RogJrDEHzH4ykVVVThdbAJKqZti/g6qql9PnjdlnLEtmIq2oaigpqc3JkNKUDmqNioRoRuIimsSFRFFYpwmAKkB/BaH+GkJdo1dfS6hCXeRUTuU1LcPLXEpIISHEtZVgilsW4+qiGOPmhQwXZwIqCHya45DNboU0G1rmef3fTFT17JcNO7PFVizbzYouG47WP2PZr6ZpqaWlpWQ2+2V7g+mqAgLEP+JfFWjm+SZIgD3vosoZyLaA9Pb2BtetW8fmfPVtSKuroBUmtEH2c3UeWJUAJch+XxVnLqgoaX2RVjotSxynBZlQK4rGMuSgqiKgqnL2J/u3KmqaJgKaGIlEf4Xt+NE0jf0/VF6DnhFrYLkuYrH4TziOU3geCsdxMs9zsiAIGSaQAJ8RRV7/yTJcnuczq6LLBJdLs5+CAD2j1TRBz4IDAS7FcYEUwKUliU+pKsuQFTYszQQ7ybYidXd3px588EE6mKNyVLOtmfhH/Ksy5TzXHAmw51xSXYOM1dBMcIPBoGQsxjIEOJPJBLPzwYYAM0HN/oegqjLR1QKapgQVZfWnpnGiqqoBRVGCAARNU3QB1jSOb2iI/saqALN+sv8zKLj6+8rKyiMa02WeU5kAaxqviiKX4TjIAJ/meWR4XpRXBRQZTePToiimBQGGKLPh5bSmafrfTfO+6WAwmFZVVV+QxT4bHx/XF2D9/u//PhN72gdcXerprRH/iH8u0M4zTZIAe8YV7hnChgMffPBB0VgVHYlEdIFl2TAbXs6KKRteDrCsl52UpWlaIJNRgzzPRFcLZMWXfS4qCgKAIiiKEuB5XpBlWWRCrKrgGxujX2bZ7+XXKg3Z32Oxlf/GxJDjNJXjBJaVMiFmGXGG40QZ0GSeFzI8r8kcJ2QEgYnz6n+G8AYCAfZ7SlH4THbbEZvbZWKcZsPOTIiHhoZSf/u3fyvTSVju8c5omfjnvg/IAncQIAF2B3dPtmqcxcuyX0mSAuFwOBiLxZjYsuHoQDYrDjAhVlVeF16eVwOZTMYQXpHjVCa2LOMVskPPTIgFjhN4JsDRaOjP2eIqpsGrP1fFmK3XYr8mEvHf1jRdgDWOExSAUzhOZRlq9j8hw3GawvM8y4KZ0MpsKBqA/u/sAis2NJ1hR121tLSkU6kUW4SVicVi6ba2tlRXV5d8zz33MGGnrNdDTCT+ecgZZEpVECABrgrMtdVIdoEM40YwHA4HotFoMB6PB9LpdECW5YAgCAFF4QOKkmSizIabmdiyv+vZLst6FUUfdhbY2ipFAXvJA8/zmiBJ0j+9mwCb9W+Vislk6jM8D1XTL55tCWJD0OyADD0bFgRJ5nlV0TSN/ZuJr5KdI9bnikVRzCiKkpFlOZNKpTLr1q3LLC4u6hkwu3/v3r2sURJeD1OS+Odh55BpZUWABLiscNZlZdzevXsZT8RYLBbo6OgQRVFkWbC4uLgYaGlp0ed3ZVkW0um0Lr5MkFnWK8syL4oiz/69KsA8x/P8C8ZwsxWt1SxY+yVV1fVXZT+ZvosiE16BZb2KqqpMjNVgMCgzoWW/syHnZDIpR6NROZPJKA0NDZm5ubn0tm3bMvfeey8TcS8K7n0AvmfC4KsA/iAPg74C4OsA7MrdDGAfgO8A+ByARJmZ2A7gGwC+DGC2zHUXqo74Vwgh+rxmESABrlnXuWe4MWd3zTXXiJlMRkwkEkIwGBQCgYA+7MzENh6P80yE2e+S1MQDGp9KpXlRVI6a54CzonupMxzHXSvLgiZJQTWVSkOSWAYs6qLLcasLs2RZZsPR+u/s58zMjNzQ0KBk327kVcE1O8wQU6sT84mwWwJ8NYDHAEwAYA8N1RbgK4hO/HPvu08tlxcBEuDy4unr2ti2kmuvvVYX3aamJk5RFJb98mwsWZIkLplMcqlUao6BpJ9fabmywsyyLTQ3N6sTExNaa2srK6vyPM+yYHVpaUkX4+xwci2eWsX6930AewDcAmA/ACODPQTg0wBO2BCJBLjAt4v45+vwH41i5AAAIABJREFUU5OdJwGuSbfVrtFsDpYJrZ0As15lF+J4cci4XKAbYvszU0ZpiHJXmQXYyF53ZI03t2n0x1rG/BBg2Gruu5Glmx8kjM+NB4pyYVX2eoh/ZYeUKlwDAiTAawCPbi0egewiqJw3Zuebi6+4tu+wE2Vrj4rNgO3Ek9VpFlir+BptGmU6snPLVgH+limLt9rpaREm/tX2F6XerCcBrjePerw/FACvcJA5k3QyB5zPw8YirIhJIM11GiJulNtpWbzF6v4mgAcB3J+tw24O2O5v+R4QPMNK4p9nXEGGmI4hIjAIgaogQAHwMpjN4ms3PGwunGvhlrmMVVitdRrCye5hc83sYgusjCFqu1XUdmJrHX4uZHtVuOWkEeKfE5SoTLUQoAy4WkhTOzoCFAAvEcEsYvkWXxk3FDMEbc1sjW1JdnPN1u1QRnvGUHKuVdC5hriNzNmTjCf+edItvjWKBNi3rnen4xQAddzDpqFep9ljKQJcKAO2rrY2i6qRDfc72IZknkt22h9XCEj8cwV2ajQHAiTARI2qIkABUIfbEFMnmW8pGbDTOeC7s4eBmIeerQvC2EIsNkzNLmOLlN2iMevwtt1Wqqpyza4x4p/rLiADTAiQABMdqooABUDkWnnM/FDOfcC5hpbNbdhtJTL4YCzestrLxPpLAP5rdrGWlT+VOo2rLDwl/pUFRqqkTAiQAJcJSKrGGQIUAPXTpMxHUJqBK6cAs3qd7AO2E2HrPK7ZZkNgWf3GimmraDsjgwuliH8ugE5N5kSABJjIUVUEKABWFW5qzIIA8Y8o4SUESIC95A0f2EIB0AdO9nAXiX8edo4PTSMB9qHT3ewyBUA30ae2iX/EAS8hQALsJW/4wBYKgD5wsoe7SPzzsHN8aBoJsA+d7maXKQC6iT61TfwjDngJARJgL3nDB7ZQAPSBkz3cReKfh53jQ9NIgH3odDe7TAHQTfSpbeIfccBLCJAAe8kbPrCFAqAPnOzhLhL/POwcH5pGAuxDp7vZZQqAbqJPbRP/iANeQoAE2Eve8IEtFAB94GQPd5H452Hn+NA0EmAfOt3NLlMAdBN9apv4RxzwEgIkwF7yhg9soQDoAyd7uIvEPw87x4emkQD70OludpkCoJvoU9vEP+KAlxAgAfaSN3xgCwVAHzjZw10k/nnYOT40jQTYh053s8sUAN1En9om/hEHvIQACbCXvOEDWygA+sDJHu4i8c/DzvGhaSTAPnS6m12mAOgm+tQ28Y844CUESIC95A0f2EIB0AdO9nAXiX8edo4PTSMB9qHT3ewyBUA30ae2iX/EAS8hQALsJW/4wBYKgD5wsoe7SPzzsHN8aBoJsA+d7maXKQC6iT61TfwjDngJARJgL3nDB7ZQAPSBkz3cReKfh53jQ9NIgH3odDe7TAHQTfSpbeIfccBLCJAAe8kbPrCFAqAPnOzhLhL/POwcH5pGAuxDp7vZZQqAbqJPbRP/iANeQoAE2Eve8IEtFAB94GQPd5H452Hn+NA0EmAfOt3NLlMAdBN9apv4RxzwEgIkwF7yhg9soQDoAyd7uIvEPw87x4emkQD70OludpkCoJvoU9vEP+KAlxAgAfaSN3xgCwVAHzjZw10k/nnYOT40jQTYh053s8sUAN1En9om/hEHvIQACbCXvOEDWygA+sDJHu4i8c/DzvGhaSTAPnS6m12mAOgm+tQ28Y844CUESIC95A0f2EIB0AdO9nAXiX8edo4PTSMB9qHT3ewyBUA30ae2iX/EAS8hQALsJW/4wBYKgD5wsoe7SPzzsHN8aBoJsA+d7maXKQC6iT61TfwjDngJARJgL3nDB7ZQAPSBkz3cReKfh53jQ9NIgH3odDe7zALg6OgoHnnkEXz2s59Ff3//Zebs3buXOOmmg+q87TIK8FcAfB3ALQD2W2AzPmN//hmA+wDM5inDProfwPcdwn8zgH0AvgrgDyz3XA3gMQA7sn+3K2O2r5xt25nP+v697AeHAHwawAlTwTCAb2b//TkAiSxexj3sI2sf2rNY7bE0aNdXh5C6U4yCnTu4+7ZVFgBffPFFnD9/HnfffTcikQgJsG/ZUP2Ol0mADQFkHTALsCEmD1p6ZhaeXGWcCqFZfKyCYxVfwwyzuFvF165MLsfka7uQ+BqfW0XYsPmPs6Kayz5zX3P1kwS4+l8parGWEPjyl7+s/exnLCkA9uzZg0AgQAJcSw6scVvLIMBWgTALsCHMZpExyhviYIgHQ9LIBo0sMVe2bKBuFn5rZmgWdsMmo97vAGDZJXvaZVk2yxwNUbaWYRmo3ZWvbbvyZrFm9ryZzXTZw4n5gcCol5U5brLP6IMdpvlGAGqKoV7LgM1PNrkcwAA2hlhylenIDtGYvwiFSG4msPFlMZOIkeYNB207sc88BMPKO2n7SROB12KftW3WvhEkjC8q+xsbFmJfFtbWnzho24l93//CF76gPfnkk+jr68MHP/hBsGz4+eefx+7du3VB/sY3vsGChLltNsRWyD7rMFxNfQnJ2OohsAYBNn9HWVyZBPBRSwZsJ2ZGTJvIDq3ekR2SNb5rTPCsZazD1Qwg81Aui39MvM0ZnxGrjLJ2dRhlukzib4hZPvEv1HY+wTbXa7Rl7jur+/NZe4y4bb7HzmYjHhQzbF89khXRktcE2CoGfwjgbyxPbE7KWAXtcRvhzEcaQ7jvzc7zmAljFoNS7Su1bevTYKn2Wdu3PvgMZIOE3ZcnHzYF7fvsZz+rmed/Z2Zm8IMf/AATExP6nPAjjzzCvlRs/sfcthP7iqA9FfUrAmUQ4JcBmB82zRlwPgE2Z7xW+J1koazMrdlM9u7sd8RuWPZVAEtZUWPtmEXKHBeNv1szdDtqFGo7Xzwzx06r2Mdt5n+tdeW6xzrMX5Ni7EUBtptgNzuROchJGbt5AidzBNYhJuuchZO2nZSxI22hts0PH8b9pdiX60tmXvjAylgXmKzZvrvvvlv7+c9/jk996lPo6GAPvMDhw4fBsmLLZW3b/BRuFLVbAONXbaF+O0BgDQJsrt1uuJd9bjdcavDWbgESu8ccp5yKiFGnOZ5Zh4jN9prrLTU2GfXZtZ0vnuTL9Nl9bEicLWKzG8Wym3POtQDL+rDhgA3uF/GiAJuJzH7PRVwz4XKVMQftQvMrhjesDrb7Ujhp20kZKwOctO2kTCltWxeH2D2sOGk7b5kPfehDmnUBViaTAZsXfuMNNsKvX3ZtO7HP/W8UWeBpBCoswPkWWNnFKLP4WpOMfDgWEmDrHLDdSJa5/lzxM5+wFkpmnAzHsydwNpxuLMAyt2eOI3ajYcaQPhtqLzS96FlOelWAzeDnIqaTMmaCFyKM2UlGppeLmE7adlLGjhiF2mb3FCpTatvmB5Zc2WWhtvPZ1z40NDRjzP+aO2/JgnO17cQ+z37ZyDD3EaiwALMOWkWYxS82pWOed2XlzLHJaXJgAGgnwHbzyNYFXzN5Fjk5tWEtGbB1OJnNhxvzv+a1Keb45eThwG6e2H2yObDAqwLsZJ9aoTJ2T6NOhiytQzl2DwCF2jaLkOEGJ8NLTtp2UsaJfVZ6WIfs7b6QTtrOV+bqrq6u4x/4wAdw/fXXX2rfPA+c/aNd207sc0B5KuJnBKogwLm+V+aMrdQH5GIF2CpMThc5FZt925W3W9xlXYT1u9lhe/M+aXPctosDdpk1CXAZv9Tmp7ZvAWACmGvvGGs2VxkzAZgj/yzPpnjDfLPzfye7+Mu8ZN/85JqvbSd9sELmpG0nZUpp2/zAwIaDmkwroI25GSdtFypzc1dX1z7z/C9r2FgJffPNN2P//v3M38bqa/O8kPFQkcu+MlKQqqpXBCoswPm2GBkjcIUExgn0dlmo3QIr69CsMeTLDunIt82nHAJs3YbE5nnNq5eNhWwXLPO/hUbY7HbK0BC0E9Y4KGNdvWze/uJki0yu/W4/NQ29WLfwmIeGrI40tgwYDwCjebbnlGJfMW2zIZpy21doGxdzWa75JCs2Tuy7d2ho6OvmAziMU7G6urr0hVl/8Rd/wdpjp/yY27YubjGe5M1lHNCLivgdgQoLcK454EJzsIZbjHLs32xxknXYOl8GzD7LtRDLGH3LN0edLy6aaZNrCNru73YLJ41Yyuq0zv/mOmCDlbXbW22ls5MRTk99Bbw2BG33JGNdJcgAzLdNhZFtk832IevpNcamb4PkBiHMT4dmwjKB/QWAR/JskWFtO7HPeCAopu2/BPB32SPmDKKVYp91C4V587vdiTksKPx+diQiHzaF7PsuA2b37t3/3jiAIx6P66ufh4eH9VOx2LB09ihK4ymYtf2fATycZyua07krT33xyBh3EKiwALNOWUXOys9cJz2xe9cqwKwOq4jZTX3lm6IqNJxbjAAze8wibBZR8wEcxlGedoJtEMU6CprvQBR3yFVCq14T4BK6QLfUEgJlCoC11GWy1UMIEP885AwyBSTARIKqIkABsKpwU2MWBIh/RAkvIUAC7CVv+MAWCoA+cLKHu0j887BzfGgaCbAPne5mlykAuok+tU38Iw54CQESYC95wwe2UAD0gZM93EXin4ed40PTvCDA/NDQje0ZVfjLhkhwjOf4r7399r4FAJoP/VH3XaYAWPcu9nQHiX+edk8h4+pOK1wV4PWbr1/XEe16X0NDx8P9m3b1c5yqTlw4dCQeX/itmYmxt0ZG3mJCTFcdIUABsI6cWYNdIf7VoNMA1KtWuCLAQ0NDEhfYcFtrx4Z7W5s33L+uayhkrMfWNBXzs6cXl5amv7M4P/Ljw2++yF6vlalN2pDVVgQoABIn3ESA+Ocm+sW3Xe9aUXUBbm8fuKZ/0w33tXVu/ExL64bBSKTZ1oZkYkGOLU8eX5gZefTk8df+fnZ2jB1ZRleNI0ABsMYdWOPmE/9qx4F+0IqqCnD/wM4HBjbtvq+to/990cY2ieeFvGxQVRnJ+EJsYW70hQtjB/7n8SNv/HPt0IcstUOAAiDxwk0EiH9uou+8bb9oRVUEuKdnW39LR9/Dm7e8/5ZoQ3trICBxHAdwHA9VVQt6RZZTSjw2Mzlx4cDTk+NnvzgycpS9WYSuGkSAAmANOq2OTCb+eduZftOKSgsw19297aHBLe/9wsZNu5tFMXCpPSbAD31uD1ZW0hgZncXI+VmMnp/D4mIi5/JnRU6rE2MHJ86efe2rZ4ff0c8Wpqu2EKAAWFv+qjdriX+e9agvtaIiAjwwMBAKh/v7BCn66NDVN+9sbOrk7dz+8T3bccdHrr30kaYBi0txnB2Zxb5Xh3FyeMqWLbHlydTYyOvPq4L2YGL+zMTRo0fTnqUVGXYZAhQAiRBuIkD8cxP9K9v2u1aUW4CFTZt2bWtu3/jRxuaO/9K38YaWfPO8g/3t+I8P3g4pKF7mmVOnp/H4D9/A5ORSzmxYljOYmTgyHluZ+/r81Nnnjx9/7RTtHfbWl8vOGgqA3vdRPVtI/POMd0krgPK9jKGpqbdtw8CWuzs6Nv1Ga3vfruaW9UKh6hsbQ/js/R9ARlYgCjw2DXRAENi8sIbjpyaw/5XTOHZyApmMYssaTdOwsjyZWly8sG9x7twjB157+ylgPO4ZipEhVyBAAZBI4SYCxD830V9tm7TiXR+UJQPuGth++8a+63+9rW3jr7a09TSJYhBslRUTyHwXz3PYNNiJpaWELrw7ruvFze/dhJaWiH7b3PwKXn/zHJ576QTi8dyjzLKc1mJLF2cW58ceHb945O+Hjx14032akQWUARMHvIYACbC7HiGtuBz/NQlwY+OG9u6+oS8NbNr98aaWrqFwuEnfV8SE9eN7rkNIEjExuYSJqSVMTi1haTmZ1/vBoIj+3lZ86LarsX1rD+KJNJ5/6QSef/lkzizYXGEquZReXrp4ZGL80FPnzx765szMzLK7dKPWrQhQACROuIkA8c8d9Ekr7HEvWYDXrx/6ld7BnX84uHn3kBRqCFnnetniqj0f3gZZViArqv6TCfDYhQWcOjOFtw6fhyxfuQWJrY6ORiRcfdV6jI0vYH4hjnRadswaVVW0dCoWnzj/5uFzZw9+fnT0xH7HN1PBiiNAAbDiEFMDeRAg/lWfHqQVuTEvVoC5XbseEOcWDz169bYPfbJz/eDlq6dM7bS1RrH3i3eCCar5Ond+Dt9+5CXEYilHTGD3FxjJzlnP3PTwysjw/r8JSanPHzhwgI6zdIR4ZQtRAKwsvlR7fgSIf1VjCGmFA6gdC/DAwLauxpaN7w9HWh4evOp9vcFguGD1/+mB29G9vllfZNXSHNbnedl1cngSP/rXw7h4cRHpHAusWNmmxhAGN3ZgYnIRUzMxPYsu9kolY9rkhYNHVlaWfmdp/sLBkycPzBRbB5UvHwIUAMuHJdVUPALEv+IxK/YO0grniDkS4PU9Wz/S23/tf+jo3HRn5/rBADvBysnFhpGDAQFzC3F88OarcM2WLrQ0R/SseGExgedfPoE33xrVfzdf7PPNg524847rdAFmn7OFWEePj2NmdqXg4i6rbaqqYHFuZHlk+JUfzM1OfmF8/CSJsBMHVqAMBcAKgEpVOkaA+OcYqpIKklYUB5sjAd449N4j/Rt3bO3esJWTpGhxLWRLBwICrr92A3bv3IhrruqCKPI4PzaPx586gJFzsxYB5rBlaB1uef9mXLu1B+xeRVVx7MQEXj8wov9sbo6AvTlpcqrwOqtMOq5lUotKOj6dGTv/zocPHnzxlZI6QTetGQEKgGuGkCpYAwLEvzWA5+BW0goHIJmKOBLgbTd87Gxbe/8AoKKxoRUd6zYV10q2NNua1NHegO1bu9HQIOlCyuaEc+3zbW2JYOeOftx+6xZ9CJtdbFEWE2y2h3h8YgE/eOpgzoyYCfTi3KgcDQXR0tTGBQKBzLFjL37omWceY684pMsFBCgAugA6NXkJAeJfZclAWlEcvo4E+Lpdd53p7t0+mMkkkU4uQ5VT6B+4EUFpdb9usZcoCvrBG8lU4XVRbAib7RX+zD3vARNk83VxchEPf/sFLMeu3N6UTMYQXziT3tBzldDY0MqHQlFueXk2efTocyTAxTqsjOUpAJYRTKqqaASIf0VDVtQNpBVFweXsJCwDVFY1O1xDllOYnxlBe1sfevq2FdeiqTQ7+aqtLYoDB0dzZrFsMdaHb78GH3jvINrbGi5ri21P+vNvv4Bz5y8fwp6dGVYioqZsGtwZYC+A0F+9BIAEuGRXle1GCoBlg5IqKgEB4l8JoBVxC2lFEWA5PYrSDKq5+uXFSSQT87hm2+0QhID+ekEnF9uidPddN2DH9l69+PCZKTzxwzcxNb2s7xnOdTVEJfT3taG/l/3Xig0bWvDivlN47sUT0FQFmUxSW5o9ntnYt1Vob++74mXDJMBOvFPZMhQAK4sv1Z4fAeJfZRlCWlEcvkUNQdtVLctpPRvu6hpCtLEd4XBTQQvC4QD2fPha7NzRp8/tsgw1kUjj2RdP4MBbo0ilZTQ2SBi/uJi3LnbiViQcxNzcrJZKzGohUVH6+64X2fuG7W4kAS7omooXoABYcYipgTwIEP8qS49cAsxaJa24Evs1CzCrkg1Lx5Ym9RMzWlq70NbWC17IeUbHJSvYquhbbhrCVZs7weaF2UsYhs9MY35hRd+G9Gf/41ks5zm+UlHSyKSWFC0T09Z39vAtLd15U3AS4Mp++ZzUTgHQCUpUplIIEP8qhexqvfkEmLSiQgJsVMvmhuOxOYRDDWhp7UZDY3tBb7ODOj75iR3YuqVLz4TN1z/98xvY/+pp2zpiSxdVkVe1hnAYnR39fK6s13wzCXBBd1S8AAXAikNMDVAG7BoHCgkwacXlrilLBnx5lRqSiWUoclpf6byhdzsEMZCTEOvXNWHXjf3Yfk0POjsb9Rc4GNfR4xfx13+3/7ITsFRVxsLMSaWjbT3X3NjBNTS0XlpkVYh1JMCFEKr85yTAlceYWsiNAPGvsuxwKsCrVpBWVECAV6FVlAzkdALLixPo7bsWza09tp5n24wkKaAftiFJIjraGrChuxk9PS0Ih4J49InX9L2/7GLD3InlC9qWoV2IRBo5tvCrmIsEuBi0KlOWAmBlcKVanSFA/HOGU6mlihNg0oqKCbDhQDY/nIhdREAQ0TvwnoJ+1Q3iOP24Sva7qm97ymD64mH0rOtFT8/VsL55qWCl2QKx2AxE8SwaGwufY+20TipXXgT27t3riJPlbZVq8wsChQTYLzhUqp8/ffYImtquKql6L2lFtZI1R8GulKcaqwcy6TjSiUms796OUKgJghgs6CSWRafic5CTUxja/B6EQqUdg2k0RAJcEHLXC5AAu+6CujaABLiy7l2LABuWeUEr6k6AGbiapiAZn0ZAlNDa1odItM12KzJ7eYKciSGTmEdLYyO6u7eUhTVMgAXhDJqaSjvBqyxGUCV5ESABJoJUEgES4EqiC5RDgL2gFUyAjxx55peeffaJir43oGoZsNntcibOtg+huaULDQ2dCATfFcRkfAFQEwiKwLqOPkQizWVjDBNgnj+tC7B1xXXZGqGK1oQACfCa4KObCyBAAlxZipRLgA0r3dIKJsCHD//0l1944Yf79dViFbqcCfDOu852920fKKcN7EUJmdSiPjcclKJobd+IpflRREMhtDS3oKW5q+S53lx2MgHm+GE0NUbA885O7Spnn6muwgiQABfGiEqUjgAJcOnYObnzX595B83t5RmxNNpzQyuYAL/1zk/2vPTcj5gAF/8ieidgOTyKkr9u512nyy3Ahn2KnNRf7sDEeNuWXWhu7kAwWJlFUkyANZxEc1MUgnDFSZUOIaNilUSABLiS6FLdJMCV4wBbRMUy4HILsBtawQT4wKEffWz/iz9hApyuFGqFM+BdCFyn3XWyUgLMOsYctzJ3Grff9inH50mXAggTYBUnVgWYF2gYuhQQK3wPCXCFAfZ59STAlSOAoip4+rljFRPgamoFE+DX3/7hna+c/+k+DOsCXJFh6EICzGMIgeua7zre3VveIWgrDVbmz+D2Wz9VOXawfcRZAWZD0EyAaRi6onCXVDkJcEmw0U0OESABdghUkcVYEsUE+N9eOI7mtvIOQbuhFUyAXzv85CdeHf7ZfozpAlyRYehCAizgJgS3pz9+sqd3x+qriyp0VUOA5+fHU79456m7Dqw8tw8HkKoUqBWCiKolBAgBQsCrCJBWlOCZwgK8C9KW5K0/2tB3w62i1BDknL1CuGhTKinAbFvTcmwmNTr6zoE3R5793Jh48h0S4KJdRDcQAoQAIZALAQGkFUWzw5EAdyV6t69v2vZr0fD6+8KRdZ2CaP+6v6JbN91QKQFeWVnQZubOjY5PHv+X4xP7HxvvGD+GBSRIgNfiLbqXECAECIHLENAFmLSiOFY4EmAICId4NG5I7/hoY7j315oiPbdI4fYAx5VvK0+5BZjNSUxMnEyOz5788fmFo0+fkw/9XJHSC4kEEgASeKVy4/rFuYBKEwKEACFQ8wjoAkxaUZwfCwtwL4LoQzgMhFVJCjcnmgfb+MHdjXzPbze2DK4TxVBxLeYoXU4BjseXtOHTr06ei739pxPK6UMrgYUJWU3HUxnEISGOESQrubKtLIBQJYQAIUAI1A4CAkgrivZWIQHm0IsQWhFCE8IhDiExEAzznBCV0NDeNj/4u+var78tHF337jsEizZh9YZyCDDbsD06elg+NrLv2Qvikb+J8fNTaoCLyVomnlYRh4YVGn4u0UF0GyFACBACuREgrSiBHYUEGNiFAGIIoR3hEBAOBINhRdTCgiqGVUELN061f7C34cbfaGq5qlMQQkKpRzyuRYDZIqtkcll++/gz48diL//35ejMCVXjEnxaiavIxGQNK0kFK5hFAkf11c+ZErCiWwgBQoAQIARyIUBaUTQ3CgswsDq2H0QIYYQlFWFRDIYFVdAFmNeEEJJCe3dq6/1tTVt2hUMdnaIYdlLvZcaWIsD666uSS+rk9Nnpt08//ca58Nvf03g1znNIqIoSUzk5pshYTgIxTCGJdUjiBchFo0Q3EAKEACFACBRCgLSiEEKWz50IJYddENEICQrCkBAO8oiIaiAsqFpY40SJ5/mwqmmhxsW2Gzulbb/cEhncIUktIY53PjJdrACn0wnMLYzFRiYOvnNi+tWXlhqn39I4JcHLXFzllGVN5ZdkLh1LJrCMNJLZVc9qpU40KRJ3Kk4IEAKEQL0hQFpRpEedCDCrksc2XYRDaEYolERUDSCsi7CghVVNDPGaFuY5XoLMta3LbLmtObDploZwV39QaubgYO9wMQI8P39BHZs+dmpk/uAvLmjHXstwmXmeV+Kawv3/7d1NjNxmHcfxnx973nebbJuUFtI2JZGASm1RJQ4FFCFe1IojEuJQJLghTgiJC0JwAHFD4oxQT8ABuHGCAkKU8CLRSAlSW6omCmlD22xJ9m1m581+HuTZdbCMZ9aT7Kxnd76rRpG6zjyez/ztn5/Hz+PpOM9uWQ03IqvN7i111FZXl0dDznH48oMAAgggMDsBsmIK26IBvBPCZ1XRe1RVqGa9pqb11QxMpenL1a3zGyZQzThT94yrN7dPnF1273tixT/zzNI9DzWMmfzlB0UCeDjs6dr1S9tXbr7027f6r13crt56Y3SvV7Yj6205G206N9zY9LWl+J7vlvq6MBpynslzPKdwZlMEEEBgUQTIioKf9DQBHL+kp8dU0f2qSqrXpaXAV9Oq0jK+azjn142nqvHN6G+F/lIrPPHeezvv/9LK8Q89UqvHveH8n70CeHX1qnv9+l//+cbg4q/WvNXrLgi3jPO6obVt33mbMna91xtsdK3ao2VG10eTrej1FiwENkMAAQT2UYCsKIA5bQDv9ITjiVlPK4iXJjXi+8GRliKv0vQj1zRBUHPO1Y1nqs6q6nmuGnhBo7X64LMPLj352eVjZ2peTm94XABbG+qVV//Q/ceLRVObAAAJBklEQVTq736yec+NS86EXRdq4HzTcda2XRhtuL7ZsLX+RsdXWy/cfsAG4VugANgEAQQQmJEAWbEH7J0EcPKSvs4q0H2qtRrxULRaoVdtxfeEjfEbxrm6jXvD1lSdUWCcq/r95skHeo9/+fjyB89U68fqxgS3288G8HA4cOsb/+5eevXXly+bv/zYNU3HhdHAel7POLsdDzkPjV2PBoP1mtRevz661xsPN8/kWytmVKC8LAIIIHDUBciKMZ/w3QRw0hs2ekI11VWvV9QK/FEIN3eWKAV147uKM37FlwucU2CkYOnmqU+daD5+brl16nRQaQbxIy2TAI6iUO32u4M33375ystv//H82vIb561nB9ZpaKztOudtqzLq9W5Gvf5We0kdvXD7m42413vUD2XeHwIIHEaBuDdMVmQ+ubsN4Pjl4tcwOr0zQWvUG/brzci3TRO5hpNfrxpVne8C4/zASYE855v15qn7zWOfPNZ49Ol67d6T/fY73kee+rS7cfPqW9dWXzp/dXjh9/1K55aVF1qnwSh8vahtQ7MVBf2t7UBtva4+M5wP47HIPiOAwAIKkBUzCODkJWPceCF2dbRauKpmzdYage+afsXV/MhVnYLA9xU464w8+V7k11a2T3+45T380Wire+7Uow+9eGXtwov/aVy7KBdZK4WRvL7vou3IeZ3IDNrdLXVY17uAhy5vGQEEjooAWbH7Se5HDzhbFP9bjO2r1ohnSTvVA1etB/FwtFMlMIFxcn5gZZwvr9ptrZit1iNRq/Nmt9W56VnZMPTCyA8Hxnrb8Rcp9Kw6qqqrmxqwtOioHIe8DwQQWGCBhc+KWQRwUk87C7JXVJNRveGrZlWrV4KdEK4EzpORCaJ4VnVl9G/ip2UMraynMAwDb+AN+r1eT1156mpNfb0ymmTF7OYFPmJ56wggcOQEFjYrZhnAO1Xyefn6++4DPKqqNSqKlydVaqbmW09+rSa50JnBQPIqXjToetHgUu+rtqdvjKJ25+GR5yT9KVN235b03dT/+7ikP08ozWT770j6Xma7j0k6L+lHkr4++r7g/f25T9L3JX1L0s39fWleDQEEDkAgOUfkNXVJ0hckvSapIemHkr6S2XDSuYVz0x1mhRf0Bt1IfVn1dEODw7YSZvYBvFOFRp+QUV8VGQUaqroUyLe+/GZdnrYV/ycvVNS5pK9pqG+Onl2V/Nl5jXTAZsM3qfVJIVxWkX9A0s8lvSPpOQL4AE6VNIHA/gsUDeD4Yvtnkp45BAE8j+em4llhNFT8p6KhTmqoXx6+JagHFcBJLe7g/mv0EA9fDfkry/K0Jq21ZfWujmtNz8vpM9LtXm82ONMFngTupHBN2iaA9/+kxCsisMgCeeeUJNT+NsVoGuem/6+iyVlRU/wN76Euj0I3GSs9dLV40AEcAyVtxg+H9nRWRpd3B5p3+rzZbyxKivOLu1eWecjTbDPNEHT2qjdvGCnu1f40tVPpbfKumpP2kwP1yd1/mx7GOnSFxA4jsGACybH9m8zIVnI+yDvPjCO6kwBehHPTtFlx6EqwjABOkPLaTj9IIx1Q4+6fFNnmTnvA2WBNXid9wI3bJtnfp3bvLacLIz4wf7E7LJ2Eb/J7QvjQHULs8AIK5I3CZc8z2WM+O+8k/ftpA3jRzk17ZcWhLcEyA3gvtPQV3rhgKrLNpAMjuw9JcD6cCsik552eXJFc3WZ73skFQfy6yaSMvPss2Ulf8fbJxI1JPf29zPg9AgjMXmDcpM1xE7DiPZrUIx43pyX9Tjg3zf5zPfAW5jmAE4zkam/SLMIi20xT5J/bHVbOtpkddno2M/ycF555AZwdfp7V7OsDLygaROCIC6RDNnu8Jz3jB1IX4Mk5Y9LoFuemI140497eYQjgvF5l9v0U2WaaYZ4kgLNXrdkwjSdv5y05SA9Tj5tpOG4Yaa/lVAtaqrxtBOZCYNqZw+nAHndsc26ai4/24Hdi3gI4b2JDNlxP7N5XzQu59NBvVvNOinyvHnB2TW/6Sja5Oi5ywKaH0ukNH/xxQIsIFBWYNNqWd/6aVQBzbir6ic3xdvMWwOmh2eRqMSn4JHDjAI7X1cYTmMZtk/ewi2kCuMg94B+MuW+bbSevd553EI+bVTnH5cOuIbBwApNWXKQnZyUX4NMMQRdZocG56QiV3LwFcExb5CEbRba5mx5w/CSscW2ke96TFucnFwd593vjGZHP5yzWj/d5muULR6gUeSsIzL1Akd7suFtLRZZRFglgzk1zXybFd3AeAzje+2wR5907KbJNWmKaHnDyKMoia+2y2+RNtkjvazJ01Mx5Yg4zoIvXLlsicNACk5Yfpfcle27a67jm3HTQn+SctDevATwnPOwGAggggAACsxEggGfjyqsigAACCCAwUYAApkAQQAABBBAoQYAALgGdJhFAAAEEECCAqQEEEEAAAQRKECCAS0CnSQQQQAABBAhgagABBBBAAIESBAjgEtBpEgEEEEAAAQKYGkAAAQQQQKAEAQK4BHSaRAABBBBAgACmBhBAAAEEEChBgAAuAZ0mEUAAAQQQIICpAQQQQAABBEoQIIBLQKdJBBBAAAEECGBqAAEEEEAAgRIECOAS0GkSAQQQQAABApgaQAABBBBAoAQBArgEdJpEAAEEEECAAKYGEEAAAQQQKEGAAC4BnSYRQAABBBAggKkBBBBAAAEEShAggEtAp0kEEEAAAQQIYGoAAQQQQACBEgQI4BLQaRIBBBBAAAECmBpAAAEEEECgBAECuAR0mkQAAQQQQIAApgYQQAABBBAoQYAALgGdJhFAAAEEECCAqQEEEEAAAQRKECCAS0CnSQQQQAABBAhgagABBBBAAIESBAjgEtBpEgEEEEAAAQKYGkAAAQQQQKAEAQK4BHSaRAABBBBAgACmBhBAAAEEEChBgAAuAZ0mEUAAAQQQIICpAQQQQAABBEoQIIBLQKdJBBBAAAEECGBqAAEEEEAAgRIECOAS0GkSAQQQQAABApgaQAABBBBAoAQBArgEdJpEAAEEEECAAKYGEEAAAQQQKEGAAC4BnSYRQAABBBAggKkBBBBAAAEEShD4Lwg7HX7Mt//HAAAAAElFTkSuQmCC)
[FONT="]The correct answer is:[/FONT]
[FONT="]192.168.1.128/26[/FONT]
[FONT="]The block size for a subnet is 256-subnet mask value. Start at zero and count in block sizes. Every block size will be a new network address. Find the block size of the highest subnet and see what the next block will be.
I am able to understand /26 part but how are they getting the network ID?
Thanks[/FONT]
Stuck on this problem. plz help
[FONT="]What is the network address and subnet mask (in CIDR noration) of the hidden (xxx.xxx.xxx.xxx/xx) subnet? The whole network has a network address and subnet mask of 192.168.0.0/23[/FONT]
[FONT="]The correct answer is:[/FONT]
[FONT="]192.168.1.128/26[/FONT]
[FONT="]The block size for a subnet is 256-subnet mask value. Start at zero and count in block sizes. Every block size will be a new network address. Find the block size of the highest subnet and see what the next block will be.
I am able to understand /26 part but how are they getting the network ID?
Thanks[/FONT]
Comments
-
damico Registered Users Posts: 2 ■□□□□□□□□□
Is this a multiple choice? What is the other option? Just to know. -
NEODREAM Member Posts: 124 ■■■□□□□□□□
/26 is 255.255.255.192 so your block size is 64, which indicates when each network begins, example:
192.168.1.0 - .63
192.168.1.64 - .127
192.168.1.128 - .191
192.168.1.192 - .255
From the way the question is asked I'm still not too sure what they are wanting, but to answer your question that is why the network starts at the .128 for a /26 in this example.